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SUMMARY

A finite difference simulation method is developed for 3D flow about a body of complex geometry. The
Navier-Stokes equation is approximated by a high-order-accurate difference scheme in the framework of
rectangular co-ordinate systems. The configuration of the 3D body is represented by use of both surface
porosity and volume porosity and the no-slip body boundary conditions are approximately implemented on
the boundary cells. The validity of the method is demonstrated by a numerical test of flow past a sphere at a
Reynolds number of 1000. The complicated structure of separated vortices is well revealed by this test
computation. The versatility of the method is shown by application to an ocean-engineering problem of flow
about a bay with an island.
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1. INTRODUCTION

Computational fluid dynamics has made remarkable progress during the last decade because a
number of researchers have devoted a great deal of effort to the subject and computer technology
has made rapid advances. Current efforts are being focused on applications of computational
fluid dynamics to a variety of research problems which are important from either the scientific or
engineering viewpoint.

One of the important problems in engineering science is that of drag forces on a body moving
at a steady speed or standing still in a uniform stream. The most important component of drag is
caused by the separating flow, which is called pressure drag or drag due to vortex generation. In
order to design a body configuration of minimum drag, elucidation of the structure of separating
flow and the mechanism of vortex shedding is most important. Reduction of drag can be achieved
only when the flow is fully understood. A sound understanding of the physical phenomenon that
connects the body configuration with the related forces often gives a breakthrough in the design
of minimum drag configuration. One example is the relation between ship hull configuration and
wave resistance. After the non-linear wave-making phenomenon called the free surface shock
wave had been elucidated by experiment,’ a finite difference method was developed for simulation
of non-linear ship waves. The successful application of numerical methods to the Euler equation
in engineering is also observed in the field of aeronautics. In the field of ocean engineering there
are a variety of fluid dynamical problems in which 3D non-linear fluid motions and resultant
forces are important. A numerical simulation method which can cope with these problems and is
convenient to use would certainly contribute to the progress of ocean engineering.
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Finite difference methods employing the boundary-fitted curvilinear co-ordinate system have
been developed and promising simulation results have been obtained for viscous flow problems.
These will undoubtedly make an important contribution to the elucidation of the structure of
viscous separating flows as well as the mechanism of 3D vortex shedding. However, there are
many cases in which the configuration of a body is too complex for the boundary-fitted co-
ordinate system or the effort of grid generation is tremendous, and these methods are not suitable
for practical engineering purposes at present.

For some engineering and scientific problems the use of rectangular co-ordinate systems may
be worth consideration. The advantages of inflexible rectangular co-ordinate systems can surpass
the inherent disadvantages, since they are able to cope with boundaries of complex geometry with
extremely small effort of grid generation. Flow about a body of extremely complicated geometry
and flow within complicated boundary configurations can be dealt with by these co-ordinate
systems. One example is the flow problem in ocean engineering. The geometry is often so
complicated with islands and seamounts that the use of boundary-fitted co-ordinate systems is
not practicable. A more practicable method must be developed by approximately implementing
the viscous motions on the boundaries of the complicated geometry.

A number of finite difference simulation methods have been developed in the framework of
inflexible rectangular grid systems. The MAC method® and its improved versions such as the
SOLA method* have been applied in many research fields. However, the boundary conditions on
the body boundary and on the free surface were treated very grossly. A new technique has been
devised to implement the free-slip body boundary condition on the hull surface of a ship in the
TUMMAC-IV method.® Since no effort is required for grid generation and consequently the
simulated wave system can be obtained in a reasonable time of execution by a workstation with
sufficient degree of accuracy, this method is convenient to use in practice.

In this study the no-slip body boundary conditions are approximately implemented on the
boundary cells about a 3D geometry of arbitrary configuration in the rectangular co-ordinate
system. The usefulness of this method is examined by simulation of flow past a sphere and it is
applied to an ocean-engineering problem with complex geometry. The overall computational
procedure is described in Section 2 and details of the treatments to implement the body boundary
conditions are described in Section 3. The zoning method is described in Section 4. Simulation of
flow past a sphere is described in Section 5. Simulation of flow in Sagami Bay is presented in
Section 6 with computer graphic drawings. Brief concluding remarks are given in Section 7.

2. COMPUTATIONAL PROCEDURE

2.1. Grid system

In order to avoid the difficulties of generating boundary-fitted curvilinear grid systems,
inflexible rectangular grid systems are employed here. The advantages of choosing this grid
system are that elaborate efforts to generate a 3D curvilinear grid system with proper clustering,
smoothing and normalizing are not necessary and that it can cope with bodies of extremely
complex geometry. It is imagined that generation of a curvilinear grid system is difficult for an oil-
drilling platform which is composed of a number of member structures and floating on a rough
sea with breaking waves. The boundary-fitted grid system encounters serious difficulties in fitting
to boundaries of complicated geometry in ocean-engineering problems.

The most serious disadvantage of the rectangular grid system is that the complicated viscous
flow in the boundary layer is very grossly simulated owing to the coarse grid spacing and the
approximations introduced in the calculations near the body boundaries. Another disadvantage
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is that some ingenious treatments must be devised so that calculations in the boundary cells,
where the body surface of complex geometry intersects the underlying grid lines in a variety of
ways, do not diverge by not satisfying the conservation properties.

Therefore it is safe to say that the choice of the rectangular grid system restricts the problems to
which the method can be applied. For instance, it cannot be used for simulation of a viscous
boundary layer on a ship surface beneath the free surface. However, it may be useful for
simulation of flow in a bay with islands.

A staggered grid system is employed and the pressure and velocities are defined at the centre of
a cell and at the centres of cell surfaces respectively as shown in Figure 1.

2.2. Governing equations

The governing equations are the continuity equation and the Navier-Stokes equation as
follows. The laws of mass conservation and momentum conservation are implemented by proper
solution of these equations. The gradient form is employed for the convective terms for simplicity
in approximating into difference forms. All variables are made dimensionless with respect to the
uniform flow velocity, the length of the body and the time required for the uniform flow to travel
the length of the body. The stagnant pressure is assumed to be 0-5.
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Here u is the velocity, P is the pressure, Re is the Reynolds number, v, is the eddy viscosity
coefficient of the subgrid-scale (SGS) turbulence model and M is the numerical dissipation term,
which is explained later. The last term F is the external force, which is used to accelerate the flow
from the rest condition to' the steady uniform flow condition in this study. The x-axis is taken
parallel to the uniform flow direction, y in the lateral direction and z in the vertical direction.
The SGS turbulence model is introduced in the same way as in previous work.® However, it is
much simpler since an inflexible grid system is employed in this study. The use of the SGS
turbulence model is not wholly appropriate because the grid spacing is too coarse for this model
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Figure 1. Velocity and pressure points

coarse grid

Figure 2. Schematic sketch of zoning

to work properly. Therefore it is only tentatively incorporated here, in anticipation of future
extension of this method.

2.3. Zoning

The computational domain is divided into two regions: the inner region including the body and
the outer region surrounding the inner region as shown in Figure 2. In order to reduce the total
number of cells and to raise the computational efficiency, fine spacing is used in the inner region
and-telatively coarse spacing in the outer region.

2.4. Algorithm

The computational algorithm is almost the same as in previous work>on the simulation of ship
waves except for the procedures associated with zoning and the body boundaries.
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Figure 3. Computational procedure

The computational procedure is illustrated in Figure 3. Firstly flagging is performed so that
cells defined as boundary cells successively enclose the body. At each time step in the time-
marching procedure, updating of both velocity and pressure fields is first done in the outer region
following the algorithm of the MAC method? and then done in the inner region making use of the
flow variables in the outer region as boundary values. At the next time level the computation in
the outer region is repeated with the boundary values in the inner region. The detailed treatments
at the interface between two regions are described later.

In the full-of-fluid cells the Poisson equation for the pressure is solved by the Richardson

method as
V:-VP=V-(a+u™/At)=V"-b, (5)
Pt 1=pP"+@(V-VP—V"-b). 6)
Here At is the time increment and w is the relaxation factor set at a value smaller than unity. The
superscript # denotes the time level and m the iteration level. In the boundary cells the

simultaneous iterative method employed for the fulfilment of the free-slip body boundary
conditions in previous work? is used:
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Here D is the divergence of a cell and 4 is defined as follows using the volume porosity (y), which
indicates the volume ratio of fluid in the boundary cell:

Yer1HVi~1  Yies V-1, Par1HP-1
A=At 1 s
( @07 T AT T (A ) ®
where Ax, Ay and Az are grid spacings.
The velocity field is updated at each time level as
ur*D=y™ 4 At(—~VP +a). ©®

2.5. Differencing scheme

For the first derivative of velocity, fourth-order centred differencing is used. For the term du/0x
at i+1, for example, it is written as

— Uiy 52+ 8y 30— 8y yp 32
12Ax

Here the subscripts j and k are dropped for simplicity. This scheme is sufficiently accurate and the
truncation error is of the form of the fifth derivative of velocity. However, it may be liable to cause
nstability of the solution. Therefore the following numerical dissipation of the form of the fourth
{erivative of velocity is introduced:

(10)
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The parameter a, is controlled to be as small as possible so that it does not contaminate the
solution. When the Reynolds number is small and the spacing is sufficiently small, o, can be set at
the value 0-5 as in previous work on wall boundary layers.” In this study, in which relatively large
spacing is used, it is set at 6-0.

For both the second derivatives in the diffusion term of equation (3) and the second derivatives
in the Poisson equation (5), second-order centred differencing is used. In the vicinity of the
boundaries, where a sufficient number of velocity points are not available, a lower-order
differencing scheme must be introduced as will be described later. For the time differencing,
forward differencing is used, except for the convective terms for which the Adams—Bashforth
method is employed.

3. BODY BOUNDARY CONDITIONS

3.1. Porosity

Since the body surface of complex geometry intersects the underlying grid lines in a variety of
ways, the use of segments, which were employed in the 2D case,® makes the method extremely
complicated. Therefore the body configuration is approximately represented by the volume
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porosity and the surface porosity. The volume porosity (y) is the proportion of fluid in a cell and
the surface porosity () is the proportion of the cell surface which is not occupied by the body.
The latter is similar to the so-called ‘window’ through which fluid can move, which was
introduced in the simulation method for ship waves.’

As listed in Table I, the volume porosity is defined at the centre of a cell (pressure point) and is
used for flagging of cells, for the choice of differencing scheme, for approximate estimation of the
distance to the body surface and for solution of the Poisson equation of pressure in the vicinity of
the body surface by equations (7) and (8). The surface porosity is defined at the velocity point and
is used for calculation of the divergence of a cell, for the choice of differencing scheme and for
approximate estimation of the distance to the body surface. The definition of the surface porosity
is illustrated in Figure 4 in a 2D manner. The surface porosity is estimated as the mean of the
volume porosities of two cells which are connected by the cell surface where it is defined.

3.2. Flagging

All celis are flagged according to the value of the volume porosity as shown in Table II. Since
the pressure point is located at the centre of a cell, it is inside the body when the value of the

Table I. Definition and usage of porosity

Volume porosity Surface porosity
Symbol Y B
i . . : Yyt
Definition Ratio of fluid volume in one cell —
Definition point Pressure point Velocity point
Usage Flagging, choice of difference scheme Choice of difference scheme,

divergence calculation,
representation of body configuration

-—

B

Figure 4. Definition of body configuration by surface porosity
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Table II. Volume porosity and method of pressure computation

Volume porosity Flag Pressure calculation
y=10 F Richardson method
05<y<10 B, B* Simultaneous iterative method
y <05 E None

F F F

F B X F

Figure 5. Cell flagging

Table I11. Surface porosity and method of updating velocity

Surface porosity Cell combination Velocity calculation
p=10 B*-B*, B*-B N-S equation
B-F
05< <10 B*-B, B-E Extrapolation
B <05 B*-E, B-E None
E-E

volume porosity is less than 0-5. Therefore a cell whose volume porosity is less than 0-5 is defined
as an empty (E) cell and the pressure is not calculated in this cell. A boundary (B) cell is defined as
a cell whose volume porosity is greater than 0-5 and less than 1-0. In order to continuously
distribute boundary cells along the body surface, some full-of-fluid (F) cells are additionally
flagged as special boundary (B*) cells as illustrated in Figure 5.

As described in Table II, the method of pressure computation depends on the flagging.
Therefore the pressure computation in boundary cells is performed separately from the com-
putation in F-cells.

After the pressure field has been updated, the velocity field is successively updated by use of the
momentum equation at each time level. However, as listed in Table II1, the velocity is determined
by extrapolating from outside on the cell surfaces whose surface porosity is less than 1-0 and
greater than 0-5. This is because updating the velocity by the momentum equation gives
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erroneous values for the velocities in the close vicinity of the body surface where the no-slip body
boundary conditions must be taken into account. The velocity is extrapolated from each direction
by the second-order parabolic curve with its axis parallel to the grid line as shown in Figure 6 and
the following averaging operation is done so that the extrapolation is performed in the direction
approximately normal to the body surface:

u=\/<ﬁ_0'5)ﬁi+1ui+1+ﬁi—1ui—1+ﬁj+1uj+1+ﬂj—-1uj—1+:Bk+1uk+l+ﬁk——1uk—1. (12)
B+05 Bisi+Bici+ B+ B+ Bisi+ By
Here u and B are assumed to be defined at (i, j, k) and the subscripts i, j and k are dropped unless

they have other values by shifting by + 1. The value of f is set at zero when it is less than 0-5,
because the velocity is not defined in this case as shown in Table III.

3.3. Differencing scheme near the body boundary

In the vicinity of the body boundary the normal five- or three-point centred differencing
method cannot be applied owing to the lack of available velocity points. Therefore a lower-order-
accurate differencing scheme is inevitably introduced here. For the choice of lower-order-accurate
differencing scheme, flagging is done as shown in Table IV and Figure 7. The first and second
derivatives of velocity as well as the artificial dissipation term are evaluated at the points marked
by circles, while the number of available velocity points, marked by squares, varies depending on

F -
B
O Di 1. 0
E
O 41
i i A
B £
E
O
Figure 6. Velocity extrapolation in vicinity of body surface
Table IV. Flagging for choice of difference scheme
Number of
available
Derivative Flag  velocity points  No-slip condition
Oxu, 0,0, 0,w ni 5 _
n2 3 —
n3 2 Included
0,0, 0,w, 8w, Oyu, 8.u, 0,0 t1 5 —
t2 3 —
t3 2 Included
t4 2 Included
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the cases in Figure 7. The cases flagged nl and t1 are those for which the normal differencing
scheme previously described in Section 2.5 is applied.
The choice of differencing scheme, which depends on the flag, is listed in Tables V-VII for the

first and second derivatives and the numerical dissipation term respectively. Here A is the spacing
and [ is the shift operator defined as

I™ f(x)=f(x +mAx). (13)

The no-slip condition is incorporated in these schemes and the distance from the velocity point
to the body surface is approximately evaluated by the volume porosity for the case n3 and by the

ni { T o O @ t1 -
n?2 r? © t2
n3 i 0 t3

t4

Figure 7. Flagging for choice of difference scheme

Table V. Difference scheme for first derivative

Flag
Lt —J* 4+ 81 -8 14172
ot 124
_— I—171
n2, t A
P+ (1 —yH)I°
n3 AL R
y(l +7)A
 (h 05 21+ (1 —K)I°
(h=p+03) Wl + h)A
21+ (1 — B3I
t4 (h=p—05) _—

h(1 + h)A
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Table V1. Difference scheme for second derivative

Flag

I—21°+1°!

nl, n2, tl, t2 Az

291 —2(1 + y)I°
n3 —_—————

y(1 3 7)A?
201 — 2(1 + h)I°
t3(h=p4+05) W
_ o
14 (h = §— 05) 2hI — 2(1 + h)I

h(1 + h)AZ

Table VII. Difference scheme for artificial dissipation term

Flag

12 -4] +61°— 4114 ]2
nl, t1

A4

-2 0 -1

n2, t2 __Ij_l_
AZ

n3, t3,t4 0

surface porosity for the cases t3 and t4. In the vicinity of the body boundary, three-point centred
differencing with equal or unequal spacing is employed. It is noted that the first-order numerical
dissipation of the second-derivative form is inevitably introduced instead of the third-order
numerical dissipation of the fourth-derivative form when the flag is n2 or t2.

4. ZONING

4.1. Zone division

In order to raise the economical efficiency, a zoning technique is incorporated in this
simulation method. It is safe to allot relatively coarser grid spacing in the region where the
physical phenomena do not involve small-scale motions or do not render significant influences.
Since the present method is mostly designed for open boundary problems, e.g. flow about a
moving body, the region with coarser spacing may be located outside the inner region with finer
spacing so that the detailed flow mechanism may be resolved by the sufficiently fine spacing in the
vicinity of the body.

In this study the spacing in the x-direction (Ax) is set the same for both the fine and coarse
regions, but the other two spacings (Ay and Az) in the coarse region are set at double the finer
spacings as shown in Table VIII.
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Table VIII. Grid spacing

Fine grid Coarse grid
Ax=Ay=Az=A 2Ax = Ay = Az =2A
domom
o m +3 =
ool
GJ G L:Ix [
] O i} + =
FoeRom interface
| modoum
q‘ . & = =
© h
£3 = = q
fine

Figure 8. Velocity and pressure points at interface

4.2. Interfacing

The outer region with the coarse grid system and the inner region with the fine grid system have
an overlapped part as shown in Figure 8, in which rectangles indicate velocity points and circles
pressure points. Only the pressure inside the interface is normally calculated and the pressure
marked by a solid circle is set at the boundary value. The velocities marked by solid rectangles in
the overlapped region are necessary for the evaluation of the source term of the Poissson equation
for the pressure, since the five-point differencing scheme is employed for both the convective and
artificial dissipation terms.

The pressure and velocities in the overlapped region are determined by interpolating the values
of the other region. When the computation in the coarser grid region is finished, the values in the
overlapped part of the finer grid region are updated by linearly interpolating the values in the
overlapped part of the coarser grid region, which is just updated by the following equations for
the case illustrated in Figure 9, in which P, is to be computed in the finer grid region:

Va=(V1+V2+3V3+3V4)/8, (15)
Vo=(V2+3V,)/4, (16)

These values are used as boundary values for the computation in the finer grid system. When the
computation in the finer grid region is finished and the time level is advanced, the values in the
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Figure 9. Definition sketch for interpolation from coarse to fine grids

overlapped part of the coarse grid region are set by linearly interpolating the values in the
overlapped part of the finer grid region.

In the case illustrated in Figure 10 the following interpolation procedures are performed for the
computation of the pressure P, in the coarser grid region:

Py=(P;+P,+P;+P,)/4, (17
Va=(Vi+12)/2, (18)
Va=(V3+V,)/2. (19)

The use of linear equations for the interpolation is supposed to be favourable for the
conservation of mass and momentum at the interface as discussed by Rai.’

5. FLOW PAST A SPHERE

5.1. Conditions of computation

The flow past a sphere is chosen as an example to demonstrate the overall appropriateness of
the present method and to examine its degree of accuracy. Although this flow is one of the most
typical, the structure of the flow behind a sphere is not yet well understood, notwithstanding the
work by Taneda,'® Achenbach'! and others. Therefore simulation of this flow is interesting from
the scientific point of view.

The computational domain is shown in Figure 11. The inner region of cross-section 2:0 x 2:0 is
made of finer grids and the outer region of coarser grids. A three-grid test is performed under the
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Figure 11. Computational domain

conditions listed in Table [X. The diameter of the sphere is divided into 12, 16 and 20 cells in the
cases (a), (b) and (c) respectively. The Reynolds number based on the diameter of the sphere and
the uniform flow velocity is set at 1000. The time increment is varied depending on the grid
spacing so that the Courant number is invariant throughout the three cases.

The computation was executed on a TITAN-II graphic supercomputer and the required CPU
time was shown in Table IX. For case (b) with an elongated computational domain the

computation was continued until the non-dimensional time reached 30, while it was stopped at
T=20 for the other cases.
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Table IX. Conditions of computation

(a) (b) (©
Cell size A 1/12 1/16 1/20
Domain of computation
(fine) Ix2x2 12x2x2 9x1-8x1-8
(coarse) 9x4x4 12x4x4 9x36x36
Number of cells used 9% 10¢ 26 x 10* 30x 10*
Reynolds number 103 10° 10°
Time increment 1/120 1/160 1/200
Time steps for acceleration 600 800 1000
(T=3) (T=3) (T=3%)
CPU time (7 = 20) (TITAN-II) 30h 100 h 150 h

Length and time are made dimensionless with respect to the diameter of a sphere and the uniform velocity.

A=1/12

A=1/16

A=1/20

Figure 12. Comparison of vorticity field at =10

5.2. Numerical test

The effect of the difference in grid spacing is illustrated in the contour map of spanwise vorticity
(w,) on the horizontal centreplane in Figure 12. The differences among the three cases are mostly
noted in the vicinity of the surface of the sphere where the strength of vorticity is largest.

The comparison of pressure distribution is made in Figure 13. The reduction in circumferential
variation on the forepart of the sphere is assumed to be attributable to the smaller grid spacing,
though it could be due to the three-dimensional structure of the flow on the afterpart.

The drag coefficient is calculated by integrating the pressure distribution on the sphere. The
value obtained varies from 045 to 049, while the experimental value in the textbook by
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Figure 13. Pressure distribution on sphere at 7=10: (a) A=1/12; (b) A=1/16; (c) A=1/20; vertical bar indicates
circumferential variation; solid curve is from experiment by Schlichting®3

Hoerner!? is 0-47 when the Reynolds number is between 103 and 4 x 10°. The agreement is better
than expected from the pressure distribution in Figure 13.

The degree of accuracy attained by the present method with the tested grid spacing is not very
satisfactory. Therefore the present method should be applied with clear understanding of this
inherent property, although the degree of accuracy is undoubtedly raised by decreasing the grid
spacing.

The pressure contour map in the fine grid region is compared with that of the overall region in
Figure 14. It is noted that the flow is continuously connected at the interface between the fine and
coarse grid regions. The slight difference in contours in the inner region is due to the fact that only
half the pressure points are used for the drawing within the inner region of the overall case in
Figure 14,
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Figure 14. Pressure contour maps on x—y centreplane in fine grid region (top) and in whole domain (bottom), A =1/20,
T=20; contour interval 0-02; positive pressure drawn in bold lines

5.3. Simulated flow

We still do not have a comprehensive explanation of the separating flow past a sphere.
Previous works by Taneda'® and Achenbach®! suggest that periodic vortex shedding, as in the
case of flow past a circular cylinder, takes place and that an asymmetric structure may play an
important role. However, the principal mechanism of vortex shedding, which corresponds to the
Karman vortices from a circular cylinder, is not well elucidated owing to the complexity of the
flow.

Even at this low Reynolds number of 1000, vortices with wide-ranging wavelength interact with
each other and constitute the separating flow past a sphere. It is obvious that the grid spacing
employed in this study can resolve only large-scale motions. However, the principal structure and
mechanism may be well simulated. The constant spacing of the present method gives the
advantage that the motions far behind the sphere can be resolved with the same degree of
accuracy as in the near field.

The simulated results for case (b) with the spacing of 1/16 are shown in the form of vorticity
contour maps in Figures 15-20 and Plate 1. After time level 7= 20 the vortex-shedding motion is
observed to be in a steady state. Figures 15-18 show the periodic elongation of the axisymmetric
vortex ring of spanwise vorticity and the associated shedding of vortex tubes of streamwise
vorticity. Since the period of vortex shedding is approximately 4-0, the Strouhal number is about
0-25, which is within the range observed in experiments.!®

Although the results obtained are still limited and the structure is very complicated as expected,
we can derive an understanding of the principal mechanism of vortex shedding from a sphere.
Firstly, the separated shear flow forms a vortex ring of spanwise vorticity. Secondly, it is
asymmetrically deformed and causes secondary vortices, mostly inside the vortex ring. The
secondary vortices are entrained on the process of generating longitudinal vortex tubes, mostly of
streamwise vorticity. When the vortex ring is elongated, it conceives and bring up longitudinal



Figure 15. Time sequential development of w, on horizontal centreplane, A=1/16; contour interval 0-5; vorticity of
anticlockwise rotation drawn in bold lines

Figure 16. Same as Figure 15 but for w, on vertical centreplane; contour interval 0-5; vorticity of clockwise rotation
drawn in bold lines
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Figure 17. Time sequential development of w, on horizontal centreplane at same instances as Figures 15 and 16; contour
interval 0-5; vorticity of anticlockwise rotation observed from upstream drawn in bold lines

Figure 18. Same as Figure 17 but on vertical centreplane
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x=1.0 x=1.5

x=2.0 x=2.5

x=3.0 x=3.5

(a) T = 22.5, wy

Figure 19. Contours of (a) @, and (b) @, on various cross-sections at T=22-5, A=1/16; contour interval 0-5; sense of
rotation for w, same as Figures 15-17
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Figure 19. (Continued)
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Figure 20. Same as Figure 19 but at T=250
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Figure 20. (Continued)
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vortex tubes inside the ring and is shortened when the longitudianl vortex tubes are shed behind.
This is repeated periodically.

The cross-sections of the vorticity contours are shown in Figures 19, 20 and Plate 1 for three
time levels in Figures 15-18, in which the origin of the co-ordinates is at the centre of the sphere.
Assuming a cylindrical co-ordinate system with an axis passing through the sphere, the angular
component of vorticity, w,, defined below is derived from w, and w,:

W, =, SinY —w,cosy. (20)

Here  is taken from the y-axis towards the z-axis. It is noted that the ring vortex is mostly
composed of spanwise vorticities , and that the longitudinal vortex tube is mostly of streamwise
vorticity w,, although all three components play an important role in the structure and
mechanism of the separating flow past a sphere. One of the principal features of a longitudinal
vortex tube is pairing with a counter-rotating tube. Therefore at any cross-section one or two
pairs of counter-rotating vortex tubes are usually observed.

The equivorticity surfaces for the three components are drawn by computer graphic technology
as shown in Plate 2, in which the equivorticity surfaces at the value of 0-5 are drawn. It is apparent
that the vortex motion is of significant complexity. The above-described aspects of the simulated
separating flow past a sphere are assumed to correspond to the result of flow visualization by
Taneda!® shown in Figure 21.

6. FLOW IN A BAY WITH AN ISLAND

6.1. Conditions of simulation

The water motions in the oceans are important because they influence the environment of the
earth. However, up to now very little is known owing to the extremely large scale of the motion

Figure 21. Visualized flow field at Re=300 from Taneda'®



Plate 1. Contours of w, at T=30, A=1/16; streamwise locations same as Figure 19

Plate 2. Computer graphic drawing of equivorticity surfaces for three components at 0-5, 7=30,
A=1/16

Plate 3. Contour map of horizontal velocity component u on horizontal planes at 0, 500, 1000

and 1500 m depth observed from south-east corner of computational domain; contour interval

0-02 ms™; positive values drawn in yellow to orange, negative values in blue; vertical co-
ordinate 10 times magnified



Plate 4. Contour map of horizontal velocity component u on vertical planes at intervals of
1-5km; orange lines indicate region of steady current; contour interval 0-06 ms™; x-co-ordinate
5 times magnified, z-co-ordinate 10 times

Plate 5. Contour map of vertical velocity component w on horizontal planes at 500, 1000 and

1500 m depth observed from south-east corner of computational domain; contour interval 0-008

ms’'; positive (upward) values drawn in yeliow to orange, negative (downward) values in blue;
vertical co-ordinate 10 times magnified
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and the high pressure beneath the ocean surface. Besides, the numerical simulations to which a
great deal of efforts has been devoted in the past decade do not yet achieve a satisfactory state of
technology, partly owing to the limited number of grid points used and the gross postulations
made. In most cases the vertical motions and the effects of seabed geometry are only treated very
approximately. The present numerical method described in the preceding sections seems to have
the potential to overcome some of the shortcomings of the previous methods because it can cope
with the problem of body boundaries of arbitrary configuration.

The flow in Sagami Bay is chosen here for a test computation to illustrate the application of our
method to oceanographical problems. Sagami Bay is located near Tokyo city and is between Izu
and Boso peninsulas. The maximum depth is about 2000um and it contains Ohshima island,
another small island and some seamounts. The isobathic contours of the southern part of Sagami
Bay for the computation are shown in Figure 22.

The horizontal length of the computational domain is 75 and 90 km in the east-west (x) and
north-south (y) directions respectively. This water region is divided into about 60000 rectangu-
lar cells. The two horizontal lengths are divided into 50 and 60 in the x- and y- directions
respectively and the maximum depth into 20. It is assumed that a steady current (gulf stream) of
3-92 knots is present in the southern part of the computational domain. It is directed towards the
north-east direction at an angle of 26:6° to the latitudinal line. The Reynolds number based on the
unit length of 15 km is set at 10000 and the computation is continued until the non-dimensional
time based on the unit length and the velocity of the steady current reaches 30.

NORTH

Boso

tzu peninsula

peninsula

YEST J—0 EAST

Ohshima island

SOUTH

Figure 22. Isobathic contours of Sagami Bay (computational domain); interval 500 m; region of uniform current shown
shaded
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6.2. Simulation results

The simulation results at the non-dimensional time 30 are shown in Plates 3-5. The steady
current induces reverse flow where the water depth is large as shown in Plates 3 and 4. The
contour maps of the two velocity components indicate that the gulf current causes horizontal and
vertical water motions in the 2000 m deep valley of Sagami Bay. Although the width of the gulf
current is assumed to be 600 m, the vertical motion reaches down to the bottom of the valley.

It seems clear that fully three-dimensional fluid motions play an important role in the
phenomena of oceans, although it is outside the scope of this paper to discuss the detailed
structure and mechanism.

7. CONCLUDING REMARKS

A new simulation technique for flow about a body of complex geometry is developed within the
framework of rectangular grid systems. The degree of accuracy is tested by simulation of the flow
past a sphere, and the effectiveness of the method for ocean-engineering problems is shown by
simulation of the flow in a bay with an island. It is demonstrated that the complicated structure of
vertex motions can be elucidated by this method and that its robustness is rather high, although
the degree of accuracy is evidently inferior to that of methods using boundary-fitted curvilinear
grid systems in the close vicinity of a body surface. For problems with which the ordinary grid
generation procedure presents serious difficulties and in which the delicate mechanism at the
separation point does not give significant influences on the overall flow field, the present method
will be useful.

Some interesting features of separating flow past a sphere are revealed by the present method
and its usefulness is demonstrated by simulation of the flow in a bay of complex geometry.
Although the grid spacing is coarse and the resultant degree of accuracy is not very good, it may
be recognized that numerical simulations play an important role in elucidation of the structure
and mechanism of complicated 3D flows.
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APPENDIX: NOMENCLATURE

defined in Table V
operator defined by equation (13)
numerical dissipation term

A defined by equation (8)
a source term

b source term

D divergence

F external force

f function

h

I

M



P

Re

S

T

t

At

u,v,w

X, ¥,z

Ax, Ay, Az

Greek letters

€8S b ™

Superscripts

m
n

Subscripts

o

[ e

(1985).
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pressure

Reynolds number

matrix defined by equation (4)

non-dimensional time

time

time increment

velocity components in directions x, y and z respectively
co-ordinates

cell dimensions

parameter for differencing scheme
surface porosity

volume porosity

spacing

eddy viscosity coefficient
relaxation factor or vorticity
angle in cylindrical co-ordinates

iterative level
time level

x-location of cell
y-location of cell
z-location of cell
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